0=4x^2+1250x-21520

Simple and best practice solution for 0=4x^2+1250x-21520 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=4x^2+1250x-21520 equation:


Simplifying
0 = 4x2 + 1250x + -21520

Reorder the terms:
0 = -21520 + 1250x + 4x2

Solving
0 = -21520 + 1250x + 4x2

Solving for variable 'x'.

Combine like terms: 0 + 21520 = 21520
21520 + -1250x + -4x2 = -21520 + 1250x + 4x2 + 21520 + -1250x + -4x2

Reorder the terms:
21520 + -1250x + -4x2 = -21520 + 21520 + 1250x + -1250x + 4x2 + -4x2

Combine like terms: -21520 + 21520 = 0
21520 + -1250x + -4x2 = 0 + 1250x + -1250x + 4x2 + -4x2
21520 + -1250x + -4x2 = 1250x + -1250x + 4x2 + -4x2

Combine like terms: 1250x + -1250x = 0
21520 + -1250x + -4x2 = 0 + 4x2 + -4x2
21520 + -1250x + -4x2 = 4x2 + -4x2

Combine like terms: 4x2 + -4x2 = 0
21520 + -1250x + -4x2 = 0

Factor out the Greatest Common Factor (GCF), '2'.
2(10760 + -625x + -2x2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(10760 + -625x + -2x2)' equal to zero and attempt to solve: Simplifying 10760 + -625x + -2x2 = 0 Solving 10760 + -625x + -2x2 = 0 Begin completing the square. Divide all terms by -2 the coefficient of the squared term: Divide each side by '-2'. -5380 + 312.5x + x2 = 0 Move the constant term to the right: Add '5380' to each side of the equation. -5380 + 312.5x + 5380 + x2 = 0 + 5380 Reorder the terms: -5380 + 5380 + 312.5x + x2 = 0 + 5380 Combine like terms: -5380 + 5380 = 0 0 + 312.5x + x2 = 0 + 5380 312.5x + x2 = 0 + 5380 Combine like terms: 0 + 5380 = 5380 312.5x + x2 = 5380 The x term is 312.5x. Take half its coefficient (156.25). Square it (24414.0625) and add it to both sides. Add '24414.0625' to each side of the equation. 312.5x + 24414.0625 + x2 = 5380 + 24414.0625 Reorder the terms: 24414.0625 + 312.5x + x2 = 5380 + 24414.0625 Combine like terms: 5380 + 24414.0625 = 29794.0625 24414.0625 + 312.5x + x2 = 29794.0625 Factor a perfect square on the left side: (x + 156.25)(x + 156.25) = 29794.0625 Calculate the square root of the right side: 172.609566653 Break this problem into two subproblems by setting (x + 156.25) equal to 172.609566653 and -172.609566653.

Subproblem 1

x + 156.25 = 172.609566653 Simplifying x + 156.25 = 172.609566653 Reorder the terms: 156.25 + x = 172.609566653 Solving 156.25 + x = 172.609566653 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-156.25' to each side of the equation. 156.25 + -156.25 + x = 172.609566653 + -156.25 Combine like terms: 156.25 + -156.25 = 0.00 0.00 + x = 172.609566653 + -156.25 x = 172.609566653 + -156.25 Combine like terms: 172.609566653 + -156.25 = 16.359566653 x = 16.359566653 Simplifying x = 16.359566653

Subproblem 2

x + 156.25 = -172.609566653 Simplifying x + 156.25 = -172.609566653 Reorder the terms: 156.25 + x = -172.609566653 Solving 156.25 + x = -172.609566653 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-156.25' to each side of the equation. 156.25 + -156.25 + x = -172.609566653 + -156.25 Combine like terms: 156.25 + -156.25 = 0.00 0.00 + x = -172.609566653 + -156.25 x = -172.609566653 + -156.25 Combine like terms: -172.609566653 + -156.25 = -328.859566653 x = -328.859566653 Simplifying x = -328.859566653

Solution

The solution to the problem is based on the solutions from the subproblems. x = {16.359566653, -328.859566653}

Solution

x = {16.359566653, -328.859566653}

See similar equations:

| 11x-19=8x+5 | | c-16=14 | | -5x+18-3x-6=52 | | 12-3p=27 | | 4x+7-x=3x-8+4 | | n+13=30 | | 7(x+5)=7(x-3) | | 3x+5(4x-6)=3x-10 | | 2y+9+3y-5= | | 3+k=-8k+3 | | -12+3x=6 | | (45y)-2(3.5y-8)= | | 2(5x+10)=-4 | | 20+2x=-9 | | -12-3x=6 | | X-2.73= | | 4-2n=22 | | 0=-4x^2+4x+5 | | X-(-7)=12 | | 2x+58=120 | | 5x+4-2x=x-7+x-3 | | 3x+17=-13 | | 1+5b+6=-18 | | 0=-8x^2+8x+9 | | factorx(x+5)(x-4)=x^3 | | 112+8y=56 | | 2(5x-3)=2x+3+3x | | 0=6n-5n | | c^2+4c-21=0 | | 5(1-3x)+13x=3 | | 3x+2=4x-8 | | -y+2=3 |

Equations solver categories